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The spin-one Heisenberg-biquadratic quantum spin chain 
treated by the coupled-cluster method 

R F Bishop, J B Parkinson and Yang Xian 
Deparlment of Mathematics. UMIST. PO Box 88. Manchester M60 IQD, UK 

Received 16 August 1993 

Abstract The coupled-cluster method is used lo obfain lhe ground-stlle energy of the isotropic 
Heisenbergbiquadratic quantum spin-one chain as a function of the ratio of the magnitudes of the 
two lerms in the Hamiltonian. WO different model stam are used which we expected to be valid 
in different regimes. In both cases we use simple approximation schemes lo obtain numerical 
results for the gmund-state energy which are compared with results of exact diagonalizations 
of shon chains. For both cases we are able to incorporate some of the long-range correlations 
explicitly. using the so-called fUlhJS2 approximalion schemes, and this leads to evidence of 
pha5e changes at certain points. These are discussed in the light of known and conjectured phase 
transitions in this system. 

1. Introduction 

Following the initial work of Roger and Hetherington (1990) we have shown in a recent 
series of papers (Bishop ef a1 1991ab, 1992a,b) that the coupled-cluster method (CCM) is 
a powerful tool for treating quantum spin systems. We shall refer to the 1991b paper as 
I. (For introductory reviews of the CCM applied to a wide variety of quantum many-body 
problems see Bishop and Kiimmel 1987 and Bishop 1991.) The main advantages of the CCM 
in principle are that it is an ab initio method and that it is completely systematic. In practice 
we have shown that for antiferromagnetic quantum spin systems it can give useful numerical 
results: even in rather low orders of approximation the results for ground-state energies are 
encouraging when compared either with exact results (for example for the s = 1/2 X X Z  
chain) or with direct numerical results obtained from short-chain extrapolations when exact 
results are not known. 

In this paper we shall use the method on the s = 1 isotropic Heisenberg-biquadratic 
chain described by the Hamiltonian 

where the sum over I is over all N atoms with periodic boundary conditions, and the 
sum over p is over nearest neighbours (p  = &I). We shall also use a notation in which 
cos w = Ji and sin w = 52. This model has an interesting zero-temperature phase diagram 
as a function of w, which is shown in figure 1. Within the non-ferromagnetic regime 
-3n/4 < w < x/2, the system is integrable using the Bethe ansarz (Bethe 1931) at the 
points marked T, at w = -n/4 (Takhtajan 1982, Babujian 1982), and S, at w = n/4 (Lai 
1974, Sutherland 1975). The exact ground state is also known at the point marked B, at 
w = -n/2 (Parkinson 1987, 1988, Barber and Bachelor 1989, Kliimper 1989, 1990) and 
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Figure 1. The zero-temperalure phase diagram of the s = 1 Heisenberg-biquadratic quantum 
spin chain. me various marked points. referred to in lhe lex& correspond to values Of o at 
which exact resulv. are known. 

at the point marked A, at w = tan-l(lj3) (Affleck et a1 1987, 1988). The pure Heisenberg 
point marked H, at w = 0, was discussed by Haldane (1983ab) who predicted the existence 
of a previously unexpected gap. 

The system is now believed to have a doubly degenerate ground state and a gap in the 
whole of the region -31114 w < -x/4. The nature of the ground state in this region is 
complex with 'dimerized' and 'spin-nematic' phases possibly present (see Chubukov 1991 
for a discussion). At the integrable point w = -n/4 there is a transition to a Haldane-like 
phase with a singly degenerate ground state and a gap. which continues to w > 0 and 
probably up to w = r /4 ,  including the w = tan-I(1/3) point. Again, this regime has 
a twofold real-space periodicity. The threefold real-space symmetry of the exact solution 
at o = a/4 is believed to exist over the whole of the region a/4 Q w < x / 2  and this 
region also appears to be gapless (F6th and S6lyom 1991, 1993). Chubukov (1990) has 
predicted unusual ordering in this region and also in the region -3a/4 < w 5 -a/Z.  Other 
recent numerical work on this system includes that of Xiang and Gehring (1993), who used 
a truncated basis expansion inspired by the Wilson renormalization group method in real 
space. 

The CCM should be a good candidate for study of this system with its mixture of exact 
and non-exact results and rich phase structure. This is because the CCM is applicable equally 
to integrable and non-integrable systems and also has the potential to predict phase changes 
in a way that purely numerical results cannot. 

Finally we note that CCM results for the pure Heisenberg model, w = 0, were given in 
our earlier paper (Bishop er a1 1992a). 
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2. The CCM based on the Nee1 model state 

The starling point of the CCM is the choice of an ‘uncorrelated’ model or reference state 
10). One obvious choice for I@) is the usual two-sublattice Nkel state, I@) + IN2) = 
I + -+ -+  - + ...), where + denotes an s = 1 atom in a state with s2 = + I  and - 
denotes a state with sz = -1. We point out that, unlike the case for s = 112 systems, the 
choice sz = 0 is a possibility and we shall consider model states in which this occurs later. 
If we take the expectation value of ‘K given by (1.1) in IN2). we obtain for the ground state 
energy per spin 

(NZI’KIN2)/N=-coso+2sino=-J, + Z J z .  (2.1) 

The factor of two in the second term is already a quantum effect 
We use the usual spin angular momentum operators s‘, (1 = x. y, z ,  and S* = sx zk i sy .  

Following Roger and Hetherington (1990), for ease of later description we perform a notional 
rotation of 180” on one sublattice so that the model state may be referred to as having all 
spins pointing down. This means that a ‘creation’ operator with respect to the model state 
IN2) will always be a raising operators+ even on !he ‘up’ sublattice. The term sf . s , + ~  in 
the Hamiltonian now becomes 

Sf . = -b;s;+p + I/2(s:s:+p + s ; s q .  (2.2) 

In the CCM the me ground state is written 

IY) = eSI@). (2.3) 

The CCM correlation operator S is constructed entirely out of creation operators with respect 
to the model state, i.e., out of a sum of terms containing all possible combinations of the 
(SF} creation operators consistent with the conserved quantities. For the ground state of 
( 1. I )  we require that s;. xf s; = 0. Any particular approximation consists of selecting a 
subset of these terms. 

2.1. The SUE2 approximation 

We shall first consider the approximation known as full SUBZ. This includes explicitly 
all possible correlations involving two spin-raising operators. No other correlations are 
included in the correlation operator S explicitly although the CCM generates many higher- 
order correlations automatically from the lower-order ones, due to the exponential structure 
of (2.3). In this approximation we write 

where i runs over all N sites and r is any positive or negative odd integer. 

the usual expansion in terms of nested commutators, 
Operators are normally required in similarity transformed form, A E e-sAeS. Using 

e-SAeS = A + [A, SI + ; [ [ A ,  SI, SI + . . . (2.5) 
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then S,? = s:; S; = s; + [ s f ,  SI; S; = s; + [s;, SI + f[[s; ,  SI. SI. These expressions for 
S:, S;, and 5; are exact for any S since S contains only creation operators, i.e., {sr). For 
the particular choice given by (2.4) we obtain 

S; = s: (2.6a) 

31 I - - sf + C b d s L  (2.66) 

R F Bishop et a1 

( 2 . 6 ~ )  

and the indices r and f are again any positive or negative odd integers. 
It is useful to split up the GI . i ~ + ~  term which occurs in the similarity transformed 

Hamiltonian into separate parts, each of which corresponds to a given total change in the z 
component of angular momentum. Hence we write 

where n is an even integer corresponding to the net change. The expressions for these X ,  
operators are given in appendix I .  

Using (2.3) together with the Schradinger equation 

,HI*) = &I*) (2.8) 

E ,  = (N2l??lNZ). (2.9) 
For the first term in the Hamiltonian it is only necessary to calculate (N21XolN2) before 

summing over I and p. but the second term requires (N2I(XoXo + X_zXz]IN2). (Note that 
X-zlN2) = 0.) The result for this approximation scheme is 

(2.10) 
The fact that only the bl coefficient occurs is a reflection of the nearest-neighbour interaction 
form of w. 

A set of coupled non-linear equations for the coefficients b, is obtained by operating 
on both sides of (2.8), again using (2.3). with 

yields 

E, fN = - J  1 ( 1 + 2 b 1 ) +  J2(2+2b1 + 2 b i ) .  

z ( N 2 l ~ ; s ; , e - ~ .  
i 

Since this operator is clearly orthogonal to I@) = exp(S)IN2), the right-hand side of the 
resulting equation is zero. On the left-hand side we need only retain terms in f i lN2) which 
involve precisely 2 spin flips. For the first term in 7i this involves the sum over I and 
p of XzlN2) while for the second term we need the sum of terms involving XzXolN2), 
XoXzJN2) and X-2XdIN2). 

After considerable algebra the followinp. set of eauations results: 
(2.1 1)  

where 
A = - J  1(1  f 2 b 1  + 2 b i ) +  Jz(1 +2b1)(1+2bl +6b:)  

c = -451 + 2b1) .  (2.124 

(2.12a) 

(2.12b) B = 8J1( l  + 2 b i )  - 8Jz(l +4bi +6b:)  

In these equations p = ?cl, and r and t may be any positive or negative odd integers. 
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2.2. The SUBZ-2 scheme 

Before solving the full SUB2 equations (2.1 I )  it is interesting to consider a much simpler 
approximation, known as SUBZ-2, in which all the coefficients (b,) are set equal to zero 
except b*l, with b-1 = bl. In this case we obtain the single equation 

- J i ( l - 6 b ~ - 2 b ~ ) + J z ( l - 4 b ~ - l O b ~ - 1 2 6 ~ ) = 0  (2.13) 

which is easily solved for any value of o, i.e. of JI and Jz. 
The results of this approximation are shown in figure 2, where they are compared with 

results obtained by numerical diagonalization of short chains. The N --t 00 limit is obtained 
by extrapolating the plot of E,/N against N-' for N < 14. The resulting curve is labelled 
'exact' in  the figure and is expected to be accurate to within the resolution of the figure. 
For this reason we have not pursued these short-chain calculations to higher N as was done. 
for example, by Sakai and Takahashi (1991) for the case o = 0. 

-7r 

1 

- 

0 

I I 

-TI2 0 
w 

2 

Figure 2. Ground-state energy per spin for the su~z.2 approximation scheme based on the N&l 
model state. The two continuous pans of the solution, su~2.za and suB2-2b are indicated by 
long and short dashed lines respectively. The dotted line (marked N&l) is the expectation value 
of 'HlN in the model stale IN2). The solid line (marked 'exact') is the exact value in the 
ferromagnetic region shown, w 6 -3~14, and a numerical estimate based on exwapolated short 
chain calculations elsewhere, as discussed in the text. 
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For the SUBZ-2 approximation we find that in the regions -2.0866 < w c -0.0155 and 
1.0550 e UJ e 3.1261 there is only one real solution: elsewhere there are three. However 
it is more convenient to consider the solutions as lying on two distinct branches. The first 
of these, which diverges to +oo at w = - H ,  0 we refer to as SUBZ-Za, while the one that 
diverges to --oo at these points we refer to as SUB2-2b. The two branches cross close to 

The SUB2-2a branch lies closest to the ‘exact’ result for w in the vicinity of 0, but 
provides a reasonable approximation over much of the region - 3 ~ 1 4  < w < ~ 1 4 .  The 
SUB2-2b branch is related to the S U B Z - ~ ~  one by the transformation w + w + H ,  E ,  + -E,., 
since w + w + R is equivalent to J I  + - J I  , JZ + - 52. This second branch would 
obviously be an approximation to the highest state in its region of existence. The other 
notable feature of the smz-za branch is the point w = 1.0550, E , / N  = 1.2490 at which 
the SUB2-2a curve tums over. We believe this is a precursor of a phase transition which is 
indicated more clearly in the full SUB? solution described in the next section. 

2.3. Solution of the full SUB2 equations 
Equations (2.1 1) can be solved by Fourier transform in the manner described in our earlier 
paper (I). The result is 

0 = H/4, -3i7/4. 

(2.14) 

where K = 16AC/BZ. The choice r = I in (2.14) gives a self-consistency equation for bl 
which can be solved numerically. Both choices of sign of the square root are needed for a 
complete solution. 

Using the numerical result forb, together with (2.10) we obtain the ground-state energy 
per spin in the full SUB2 approximation scheme as a function of w .  We obtain two solutions, 
labelled SUB% and SUB2b in figure 3, which are similar in many respects to the SUBZ-Za and 
sUBa2b solutions. In fact the results are numerically very close over much of the region. 

One interesting feature of the full SUB2 calculation for the s = 112 XXZ model was 
the existence of a terminating point which we argued corresponded to a phase change in 
the system for a particular value of the anisotropy parameter. An equation very similar to 
(2.14) was also found in the s = 1/2 model, and the terminating point occurred when K = I 
as values greater than 1 would clearly involve complex solutions of (2.14). 

In the present case, terminating points with K = I ,  marked A and B in the figure, 
were found for Su82a at w = 0.9864, E , / N  = 1.1545 and w = 0.1486, E , / N  = 1.2142. 
(Corresponding terminating points for the sm2b solution also exist, of course.) Between 
these two points there is no real solution, leading to the gap in the curve shown on the 
figure. There is a significant difference between the SUBZ-2a and SUBZa solutions close to 
this terminating point and this is shown on the enlarged portion of the figure. Again this 
behaviour is strongly reminiscent of the X X Z  model. The disconnected part of the SUB20 
curve also differs significantly from the suBz-za curve, but the solution here is physically 
unrealistic anyway. 

The terminating point A may well correspond to the transition at w = x/4  to a phase 
with different real-space periodicity. 

3. The CCM based on other model states 

3.1. Alternative model states 

In the CCM method one requires both a model state and a complete set of creation operators 
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Figure 3. Ground-state energy per spin for the full SUBZ approximation scheme based on the 
Nee1 model state, using the notation of figure 2. The insert is an enlargement of the region close 
to the terminating point A. and also shows the slJB2.a solution for comparison. For clarity, only 
the portion of the SUn2b solution which lies between w = 0 and m = n/2 is shown. 

with respect to the model state from which all other states can be constructed. For an 
antiferromagnetic spin-ID system it  is difficult to see any altemative to the N6el state, 
equivalent to the IN2) state used in the previous sections. However for an s = 1 system 
there are clearly other possible model states. We discuss in this section some of these, and 
for one in particular obtain a suitable complete set of creation operators. 

The ground state of (1.1) for -3n/4 < o < ~ / 2  lies in the sectors; = 0. Any model 
state which is an eigenstate of all the individual sf operators thus requires an equal number 
of atoms with s; = + I  and -1. However there may be an arbitrary number of atoms with 
s i  = 0. We have considered three such model states as follows, 

IN1) = IO,O, O,O, O,O,O,O, 0,. . .) 
IN3) E I f ,  0, -, +, 0, -, +, 0. -, . . .) 
IN4) E I+,O, -, 0, +, 0, -, 0, f, . . .) (3.1) 

We refer to the first of these as the 'planar' model state. It is motivated by a suggestion 
by Chubukov (1990) that there may exist a 'planar quadrupolar' phase in the region o close 



9176 

to but greater than -3n/4. The second, which clearly has threefold spatial symmetry, is 
motivated by the exact result at w = /n/4 which is known to have this symmetry and 
the recent numerical studies of F3th and S6lyom (1991, 1993) and Xmng and Gehring 
(1993) confirming the threefold symmetry over the region n/4 < o c n/2. The third, with 
fourfold symmetry, will be discussed shortly. 

If we calculate the expectation value of the Hamiltonian (1.1) in the Ntel state IN2), 
each of the above states, and the completely aligned ferromagnetic state IF) we obtain 

R F Bishop er a1 

(N21'HINZ) = N ( - J i  + 252) 

(NII'HINI) = 2NJ2 

(N31'HlN3) = N ( - J i  +452)/3 

(N4('HIN4) = N Jz 

(FIHIF) = N ( J I  + 52). 
These expectation values are plotted as functions a U in finure - The ferromagnetic 

state gives the lowest expectation value in the region H/Z c w c 5 ~ / 4  which is believed 
to be the actual ferromagnetic region. The Nee1 state IN2), with twofold symmetry, has the 
lowest expectation value in the region -n/2 c w < n/4. For n/4 c w c 1112 the state 
/N4) has a lower expectation value than either IN2) or IN3). In this region the true ground 
state is believed to have threefold symmetry, and one might have expected IN3) to be 
lowest, suggesting that these very simple model states are not very accurate. Nevertheless, 
the results do at least agree with the fact that the twofold perodicity of the N6el state is not 
present in this region. Finally in the region -3n/4 c m < -n/2 the planar state IN1) has 
the lowest expectation value of these simple model states. 

We shall not consider the possible model states IN3) or IN4) further in this paper. 
Instead we shall develop a CCM formalism for the planar model state 10) -+ [NI), with the 
a priori expectation that it will be most relevant in the region -3n/4 c w c -n/2. 

Finally, in figure 4 we also show the results of calculations based on a dimerized 
state (Chubukov 1991) and a trimerized state (Xian 1993). The dimerized (or spin-Peierls) 
state ID) is given by a sequence of spin-singlet states formed from adjacent spins on the 
chain, while the trimerized state IT) is similar to the state ID) but with each singlet state 
formed from three adjacent spins. Both states thus have a simple valence-bond interpretation 
(and see Xian 1993 for further details). It is straightforward to show that the energy 
expectation values for the Hamiltonian of (1.1) in these two model states are given by 

It can clearly be seen that in the regions where the dimerized and trimerized phases are 
believed to exist, the above simple estimates generally lie closer to the exact ground-state 
energy than the corresponding estimates based on the states IN1) and IN2). It would thus be 
of particular interest to attempt similar CCM analyses to those performed here, but based on 
the state ID) or IT) as model state. Although such calculations are undoubtedly of greater 
algebraic and computational complexity than those discussed here, we hope to report results 
in the near future. 

(DIHID) = N ( - J j  + 8J2/3) and (TIHIT) = N(-6J1 + lOJz)/9. 

3.2. Operators for the planar model state 

The normal raising and lowering operators $ cannot be used for a CCM formalism based 
on 10) -+ IN1). The reason for this is that to create a state I+) from IO) needs operators,? 
while to creafe a state I-) from 10) needs s;. Clearly s; also acts as a destruction operator 
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Fwre 4. Expectation values of ihe Hamiltonian in various passible model States described in 
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on the state I+). Since we require that the CCM correlation operator S is constructed out of 
mutually commuting creation operators only, this cannot be done using the (sf). 

For a single spin-I atom any operator can be written as 3 x 3 matrix using the basis 
[I+}, IO), I-)}. There are nine independent operators which we choose as the nine matrices 
k h  of which has eight zero entries and a single non-zero entry which we take as 1 in 
each of the nine possible positions. If Aij is the 3 x 3 matrix with 1 on the ith row and 
jth column (i.e., in a notation with (i ' lAijlj ') = 6ip6jj.. where i, j = 1 , 2 , 3  correspond 
respectively to the cases s' = + I .  0, -I), then we use the following notation 

A l l  E U' A22 E C' A33 T D' 
At2 = U' A32 = D' A21 E U- A23 = D- 
A I ,  E OM ABI E DM. (3.3) 

This notation is meant to suggest 'up', 'down' and 'centre'. while the superscript M denotes 
'maximal' i.e. double '+' or double ' - I .  

More details of these operators are given in appendix 2. The important feature, however, 
is that starting from IO), all other states, i.e. It) and I-), can be created using the two 
'creation' operators U+ and D+, and furthermore these two creation operators are mutually 
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commuting. Hence we can proceed to consmct the correlation operator S out of any 
combination of the operators [U:, D,?} alone. 

The next step is to rewrite the Hamiltonian, (l.l), in terms of the new operators. This 
is straightfonvard since all the usual spin operators can be expressed as 3 x 3 matrices 
and hence as linear combinations of the new operators. Again the details are given in 
appendix 2. The result for the two types of term is 

s 1 . 8 1 + ~  = (U;-D;)(Uft,- D ~ + p ) + ( U ~ + D ~ ) ( U ~ ~ + D L p ) + ( U ~ + D ~ ) ( U ~ ~ + D ~ p )  

(3.3) 

( s I * s ~ + , , ) ~  = 1 + U ~ D ~ + , + C ~ C ; + , + D ~ U ; + p - ( U ~ D ~ p f D , ? U ~ ~ - t D ~ U ; + p + U ~ D ; + p )  

(3.5) M M  M M  + 4 DI,, + 4 UI,,. 

Note that since the planar model state does not have two distinct sublattices there is no need 
to perform a notional rotation of one of them. 

3.3. The SUB2 approximation for the planar state 

Since the true ground state and the planar model state have si = 0 we require to remain 
within this sector. Hence S must have an equal number of U+ and D+ operators. The full 
SUBZ approximation involves all possible terms of this form and is written 

where i runs over all sites and r can be any positive or negative integer excluding 0. Note 
that r is not restricted to being an odd integer since the planar model state does not have 
two distinct sublattices. By symmetry &r = pr .  The restriction r # 0 could be dropped 
as U:@ = 0, but we choose to keep this as an explicit restriction. 

Using (25) and the commutators given in appendix 2 the nine transformed aperators 
are 

0: =U/+ (3 .74 

b: = 07 (3.7b) 

(3.7c) 

(3.7e) 
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(3.7h) 

(3.7i) 

The transformed Hamiltonian is obtained by replacing each of the operators on the 
RHS of equations (3.4) and (3.5) with the corresponding transformed operator, and then 
substitutlng into (1.1). This rather lengthy process can be shortened slightly by noting that 
the transformed Hamiltonian will operate on the model state and that only terms which 
involve either zero or two flipped spins need be retained. 

The equation for the ground state energy comes from the former of these by operating 
with (NI1 to give 

E,IN = ( N I I F ~ I N ~ ) / N  = J ~ ( Z B ~ ) + - J ~ ( ~ - ~ B ~ ) .  (3.8) 

The set of coupled non-linear equations for the coefficients (8) is obtained from the terms 
with two flips in g lNI )  by operating with (NIICi(U;D,;, + D,:UG,). The result is 

Ki c & p  + 2KzBt + K3 c B t + p  + K4 c BsSi+s+p = 0 f # 0 (3.9) 
P P S P  

with BO = 0, and where 

KI = Jl(1 - BI + 38:) - Jz(1 - 381 + 38:) 
Kz = -2[Ji(381)+ J z U  -381)l 
KS = 251 

K4 = J I  - Jz. 

As was the case for the N k l  model state, a simple but useful approximation, the SUB22 
approximation, is obtained by putting all fit = 0 except a l .  This yields 

Ji(1 -PI -68:) - Jz(1 +PI -68:) = 0 (3.10) 

so that 

(3.1 1) 

The sign of the square mot has been chosen to give a physically sensible solution, as was 
done in the earlier papers. 

3.4. Solution of the ,full SUB2 planar equations 

The method of solving the coupled equations (3.9) is essentially the same as for the 
corresponding equations based on the Nkel model state. (2.1 1). After Fourier transforming: 

(3.12) 
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and noting the restriction t jt 0 on (3.9) we obtain the quadratic equation for B(9): 

R F Bishop et ul 

US%) + hB(4) + c = 0 (3.13) 

with 

a = Kdcosq 

h = K? + K ~ C O S ~  

and 

c = K I  COsq - B I K ~  - XKI 

where 

In solving this quadratic equation it is necessary to take the positive sign of the square root 
to obtain a physically reasonable result. The choice r = 1 in (3.12) gives a self-consistent 
equation for bl which is solved numerically, and hence the ground-state energy is found 
using (3.8). The results are shown in figure 5. As can be seen they lie rather close to those 
of the SUEZ-2 approximation in a region -3n/4 4 w 5 - I .  

One important difference between the full SUB? and the sUB2-Z results is the existence 
of terminating points in the former. In fact there are two terminating points in this case 
and they occur when the term beneath the square root in (3.13) becomes negative for some 
value of 9. Because of the form of the constants, K ,  , Kz. K3 and K4, this first occurs when 
q equals either 0 or n. The terminating point corresponding to the first of these is located 
at w = ul = -3n/4, at which bI = 0 and E , / N  = -a. This is the point at which the 
system becomes ferromagnetic. The one corresponding to the second of these is located 
at U = uz = -0.9209. at which PI = -0.4264 and E, /N  = -2.7874. These points are 
indicated as P and Q respectively in figure 5. 

The second of these terminating points is the more interesting. We note that it lies rather 
close in energy to the Nkel SUE2 solution. Indeed at the su~z.2 level at which only the single 
configuration coefficient hl or PI is retained, the N&l and planar solutions cross very close 
to Q, at the value w = -0.9050. Such crossings are very commonly regarded in many-body 
theory as evidence of a phase change. The fact that the full CCM SUBZ approximation based 
on the planar model state terminates here is additional evidence for such a phase change. 
We note also that the expectation values in the uncorrelated N6el and planar model states 
cross at o = - x / 2  (see figure 4), so the additional correlations introduced by the CCM have 
considerably altered the predicted position of the phase change. 

It is difficult to be certain at this level of approximation to which of the known and 
conjectured phase changes of this system, if any, this phase change corresponds. The 
discussion above, based on its location, would suggest rather strongly, however, that the 
most likely candidate is the known phase change at w = -n/4 between the Haldane- 
like phase and the dimerized phase. Another possibility would be a transition between 
a ‘planar quadrupolar’ or ‘spin-nematic’ phase and a dimerized phase. This seems much 
less likely, however, as such a transition would have to occur in reality in the region 
-3n/4 .c w 6 - -~ /2 ,  since o = -n/2 is known to have a dimerized ground state. 
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Figure 5. Ground-state energy per spin for the sum.2 and full SUEZ approximation schemes 
based on the planar model state. Terminating p i n t s  for the planar full SUBZ scheme are at P 
(CO = -3n/4) and Q. The full sm2a solution. based on the N&l model state. is shown for 
comparison. The solid line marked 'exact' is as in figure 2, and the line marked INI) as in 
figure 4. 

4. Conclusions 

This first attempt at using the CCM method to treat the Heisenberg-biquadratic spin-1 chain, 
with its very complex phase diagram, has produced encouraging results. We have shown 
how even the simple SUBZ approximation scheme, which only includes explicitly two-body 
terms, can yield reasonable results for the ground-state energy. As we showed for spin-1/2 
systems, more accurate results are obtained by including higher-order terms in the correlation 
operator S, and this would clearly be the next step for this system also. 

A new feature of the CCM as applied to this system is the use of an alternative model 
state and an associated new set of operators. Although the use of different model states has 
always been possible in principle, the difficulty until now has always been to construct the 
appropriate complete set of commuting creation operators. In this case the planar model 
state gives much better results than the N6el model state at the same level of approximation 
for a region of o close to the ferromagnetic transition. Comparison of the results obtained 
using the two different model states and also the existence of a terminating point in both 
cases provides strong evidence of phase changes at various points. 



9182 R F Bishop et a1 

Although the CCM at the present levels of implementation are not accurate enough to 
give reliable numerical results for the nature and positions of the phase transitions, the 
ability to predict phase changes in such an ab initio calculation is in itself useful. Even at 
the present low levels of approximation we expect that studies of the correlation functions 
and the elementary excitation spectrum will shed more light on these points, and we intend 
to do this. Including more terms in the operator S would also be most interesting. 

The demonstrated ability of the cCM to incorporate multi-spin correlations on top of 
altemative choices of reference state also encourages us to extend the present results to an 
even wider choice of model states. Of particular interest for the present system would be 
to make contact with the various valence bond analyses that have been performed for this 
Hamiltonian. For example, both the dimerized and the trimerized phases have been studied 
using a spin-wave analysis based, respectively, on the simple dimer state ID) and trimer 
state IT) mentioned in section 3.1. and these are obvious candidates for model states for a 
CCM calculation. 
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Appendix 1. Terms in the transformed exchange interaction 

Using (2.6) the nearest-neighbour Heisenberg exchange can be written after transformation 
as 

(Al.1) 

(A1.k) 

(A1.26) 

and 

(A1.2e) 

X6 is not used in this paper. 
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Table AI.  Products of elementary operators. 

U' C* D' U+ Dt U- D- U' D M  
U ~ U ' O  0 u + o  0 0 U M O  
C ' O  C ' O  0 0 U - D - 0  0 
D ' O  0 D ' O  D C O  0 0 DM 
U ' O  u + o  0 0 U2 U M O  0 
D ' O  D ' O  0 0 D ' D ' O  0 
U ' U - 0  0 C ' 0  0 0 D - 0  
D - 0  0 D - 0  C ' O  0 0 U- 

D ' D M O  0 D C O  0 0 0 ' 0  
U M O  0 U M O  u + 0  0 0 U' 

Table A2. Commutators of elementary operators. 

U' C' D U+ D+ U- D- U M  DM 
U2 0 0 0 U+ 0 -U- 0 U M  - DM 
cg 0 0 0 -U+ - Di U- D- 0 0 
D' 0 0 0 0 D+ 0 -D-  -UM DM 
U* -U+ U+ 0 0 0 us -C' UM 0 - D+ 
D' 0 Di -D' 0 0 D M  D2-C' -0' 0 
U- U- -U- a C 2 - L I z  - D M  0 O D- 0 
D- 0 -D' D- -OM C 2 - D '  0 0 0 U- 
UM -UM 0 U M  0 O+ -D- 0 0 U' - D 
DM D M  0 -DM Dt 0 0 -U- D ' - U i  0 

Appendix 2. Properties of the planar state operators 

The nine elementary 3 x 3 matrices Aij satisfy the product law 

Ai jA i i  = 6 j ~ A ; ;  (A2.1) 

and these are shown in table Al .  using the notation of (3.3). The commutation relations 
are thus 

(A2.2) 

Each of the nonnal spin-I angular momentum operators can be expressed as a 3 x 3 

[Ai j ,  & / I  = 8jkAi1 -8iiAl.j 

which are shown in table A2. 

mamx and hence as a linear combination of the elementary operators, e.g. 
0 4 2  0 

= f i ( A i 2  + A23) = &(U+ + D - )  (A2.3) 

and similarly 

s- = A( U- + 0') ~42-4) 

sz = U' - D'. (A2.5) 

These are the only terms needed to obtain (3.4) and (3.5). Note also that 

U 2 + C Z + D Z =  1. (A2-6) 

The reverse process, in which each of the elementary matrices is expressed in terms 
of spin operators or products of spin operators, are also possible, e.g. UM = (st)'/2, but 
again these are not needed for this paper. 
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